

Available online at www.sciencedirect.com

Tetrahedron 60 (2004) 3941-3948

Tetrahedron

Biomimetic synthesis of the dinaphthofuranquinone violet-quinone, utilizing oxidative dimerization with the ZrO₂/O₂ system

Tokutaro Ogata, Iwao Okamoto, Eiichi Kotani and Tetsuya Takeya*

Pharmaceutical Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan

Received 10 February 2004; revised 11 March 2004; accepted 11 March 2004

Abstract—The first total and biomimetic synthesis of violet-quinone (1), which has a dinaphthofuranquinone (DNFQ) framework, is described. This synthesis features the oxidative dimerization of 1-naphthol **4** and the construction of the DNFQ framework by photochemical ring closure of 2,2'-binaphthoquinone **7** as a key intermediate. Compound **7** was prepared by the novel oxidative dimerization of **4** with a semiconductor (such as ZrO₂) in the presence of dioxygen, followed by oxidation of the resulting 2,2'-binaphthyl-1,1'-quinone **6** with HNO₃. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Among natural biarylquinones, dinaphthofuranquinones (DNFQ) such as violet-quinone $(1)^1$ and balsaminone A (2),² and dibenzofuranquinones (DBFQ) such as popolohuanone E (3),³ having the dibenzofuran-1,4-dione moiety as a key structural element, have been isolated from several plants and marine products. Compounds 2 and 3 show antipruritic activity² and selective cytotoxicity against A549 non-small cell lung cancer cells, respectively (Fig. 1).³

Figure 1.

A possible biogenetic pathway to biarylfuranquinones E (DNFQs and DBFQs) would involve (i) the oxidative biaryl coupling of the corresponding two aryls A (1-naphthols or phenols), (ii) selective oxidation of biaryls B, and (iii)

subsequent intramolecular ring closure of biarylquinones **C** or **D** to form the corresponding furan rings, as shown in Figure 2.³ There is some support for such a biogenetic pathway. Thus, violet-quinone (1), along with diosindigo B (**6c**) and biramentaceone (**7c**), which are related to the intermediates **C** and **D**, have been isolated from the heartwood of *Diospyros melanoxyloin*,¹ and its congener *Diospyros celebica*⁴ also contains dihydrodiosindigo B (**5c**), corresponding to **B**, together with **6c** and **7c** (refer to Fig. 2, Schemes 2 and 3).

Although the synthesis of **3** has been explored⁵ owing to the biological activity of **3**, as described above, a total synthesis has not yet been achieved. Violet-quinone (**1**) has an analogous framework (the diarylfuran-1,4-dione moiety) to popolohuanone E (**3**). From the viewpoint of the structure–cytotoxic activity relationship of **3**, compound **1** is of great interest as a synthetic target. As yet, its synthesis has not yet been accomplished.

Several methods have been developed for the preparation of

Keywords: Violet-quinone; Dinaphthofuranquinone; First synthesis; Oxidation; Zirconium dioxide.

^{*} Corresponding author. Tel./fax: +81-427211579;

e-mail address: takeya@ac.shoyaku.ac.jp

2,2'-binaphthyl derivatives such as **B**, **C** and **D** by the oxidative dimerization of 1-naphthols. These involve chemical,⁶ electrolytic,⁷ thermal disproportionation⁸ and air oxidation⁹ reactions. However, the reactions are difficult to control, mostly showing poor selectivity and low yield of the desired products, accompanied with side reactions.

Recently, much attention has been focused on the use of various semiconductor catalysts,¹⁰ particularly TiO₂, to achieve a variety of organic reactions and syntheses on the basis of the concept of green chemistry.¹¹ More recently, we developed a new and efficient method for the direct synthesis of 2,2'-binaphthyls, utilizing an oxidative dimerization of 1-naphthols (NPOH), with semiconductors such as ZrO₂ and activated charcoal (Act-C) in the presence of dioxygen (O₂).¹²

This method has stimulated further studies with the aim of applying it to biomimetic synthesis of natural products. Here, we present the first total synthesis of violet-quinone (1), utilizing the oxidative dimerization of NPOH **4b** with the ZrO_2/O_2 reagent system.

2. Results and discussion

2.1. Synthetic plan

For our feasibility study, we envisioned the biomimetic synthesis of DNFQ **1** through pathway (I) or (II), based on our biogenetic hypotheses mentioned above (Fig. 2).

Pathway (I) consists of the formation of 2,2'-binaphthyl-1,1'-quinone (6; BNPTQ), which is related to intermediate **C**, by the oxidative dimerization of NPOH **4** and the construction of DNFQ framework by intramolecular ring closure of **6**. In contrast, pathway (II) involves the formation of 2,2'-binaphthoquinone (7; BNPQ), which is related to intermediate **D**, and the construction of DNFQ framework by ring closure of **7**. These approaches are attractive because of the simplicity of the reaction and its possible involvement in biosynthesis of naturally occurring DNFQs and DBFQs as described above.

2.2. Preliminary experiments for synthesis of violetquinone

As a prelude to the synthesis of violet-quinone (1), preliminary experiments using 4-methoxy-1-naphthol **4a** as a model substrate were examined. These were based on pathways (I) and (II) described above (Scheme 1).

First, BNPTQ **6a**,^{13a} the required model intermediate in pathway (I), was prepared in 95% yield by the oxidative dimerization of **4a** with the Act-C/O₂ system¹² in MeCN. The reaction with the ZrO_2/O_2 system under similar conditions gave **6a** (75%) along with 4-methoxy-1,2-naphthoquinone (17%). Subsequently, **6a** could be easily converted to BNPQ **7a**^{13d} as the model intermediate in pathway (II), in 99% yield, by oxidation with 69% HNO₃.

Several methods have been reported for the construction of the DNFQ framework by ring closure of BNPTQs or

Scheme 1.

BNPQs. These include photochemical, 13a,d thermal, 13e and chemical (with acid 13d or base $^{13f-h}$) reactions. We examined the photolysis of **6a** and **7a** under various conditions.

The photolysis of **6a** using a 60 W Hg lamp in CHCl₃ with a Pyrex vessel for a long time (80 h) gave **8a**^{13a} in 88% yield. When we used a 450 W Hg lamp under similar conditions but for a short time (1 h), DNFQ **9** (59%) and **8a** (25%) were obtained. In the photolysis of **7a**, the best result was obtained with a 450 W Hg lamp in CHCl₃ for 2 h, affording DNFQ **10** in 90% yield, and methylation of **10** with CH₃I gave **9** in 91% yield. This mechanism for the photochemical conversion of **7a** into **10** was proposed to proceed via ring closure with rearrangement.^{13d,i} The synthetic compounds **9**^{13a} and **10**^{13d,e} were identical with the corresponding compounds reported previously. In addition, the structures **9** and **10** were confirmed by analyses of the IR, ¹H-, ¹³C NMR spectra with the aid of 2D NMR analyses.

2.3. First total synthesis of violet-quinone

On the basis of the results and information obtained from the above model experiments, the synthesis of **1** utilizing **7b** as the key intermediate was investigated based on pathway (II). First, NPOH **4b** was synthesized according to the protocol reported previously.^{14a,b,15a}

In order to obtain BNPOH **5b** or BNPTQ **6b** as a precursor for obtaining **7b**, oxidative dimerization of **4b** using several reagents was examined (Table 1 and Scheme 2). The reaction with Ag_2O gave a mixture of **5b**, **6b** and the *ortho*naphthoquinone **11a** (entry 1). However, **5b** could not be isolated because it proved very susceptible to air oxidation and decomposition. The structure **5b** was thus confirmed by converting this compound into the benzylated derivative **5d**.

In the case of the well-known AgO/HNO₃ system,^{6m} the desired compound **7b** was obtained in one step, but the yield was not satisfactory (entry 2). Laatsch^{15a} reported that the

3942

Scheme 2.

oxidative dimerization of **4b** with the Ag₂O/NEt₃ system⁶ⁿ gave only **6b** without any by-product. Re-examination of the reaction by us afforded **6b** (92%) together with the *para*-naphthoquinone **11b** (4%) (entry 3). The best result was obtained by employing the novel oxidative dimerization with the ZrO₂/O₂ reagent system, which we recently developed, affording BNPTQ **6b**^{15a} selectively in excellent yield (entry 5). Subsequent oxidation of **6b** with 69% HNO₃ produced **7b**^{15a} in 99% yield. When **6b** prepared by means of the above oxidation was used without purification, **7b** was obtained in a similar yield.

Furthermore, the synthesis of 1 from the resulting 7b was investigated, as shown in Scheme 3. Magnesium bromide (MgBr₂) effected demethylation of the methoxyl group of

Table 1. Oxidative dimerization of 4b with various reagents

Entry	Reagent	Time (h)	Product (isolated yield, %)				
			5d	6b	7b	11a	11b
1 ^{a,b}	Ag ₂ O	0.5	30 ^c	34		8	_
2 ^b	AgO/HNO ₃	0.5			50		17
3 ^b	Ag ₂ O/NEt ₃	0.5	_	92		_	4
4 ^a	Act-C ^d /O ₂	24	20°	44		11	9
5 ^e	ZrO_2/O_2	19		96		—	_

^a This reaction with Ag₂O in CHCl₃ gave a complex mixture containing **5b**. In order to isolate **5b**, we performed column chromatography of the reaction mixture under various conditions. However, all the attempts were unsuccessful, producing mainly solid mixtures of **5b** and **6b**. Furthermore, the mixture of **5b** and **6b** was treated with benzyl iodide/ K₂CO₃ to give **5d** together with non-reacted **6b**.

^b Under air at 23 °C.

^c Yield from **4b**.

- ^d Activated charcoal.
- $^{\rm e}$ Using a dioxygen (O_2)-saturated solvent (MeCN) at 70 °C.

7b to produce **7c** as a natural product, the so-called biramentaceone, ^{15a} in 80% yield. The naphtholic hydroxyl group of **7c** was protected with a benzyl group using benzyl iodide¹⁶ in the presence of K_2CO_3 to yield BNPQ **12**. Subsequently, the ring closure of **12** was achieved by means of photolysis^{13a,b} using a 450 W Hg lamp in CHCl₃ with a Pyrex vessel for 1 h to give DNFQ **13** in 87% yield. Next, compound **14** was obtained by methylation of **13** with methyl iodide. Finally, the reductive deprotection of the benzyl group of **14** with 10% Pd/C–H₂ gave violet-quinone (**1**) in 96% yield, as a violet solid. All physical data, such as the melting point, MS (Mass), IR (infrared) and ¹H NMR spectra of the synthetic product **1** were identical with those of the natural product.¹

3943

Scheme 3.

2.4. Structure of violet-quinone

There is, to our knowledge, only one article relating to violet-quinone (1). This was published by Shidhu et al. in 1981.¹ In this article, a structural analysis of naturally occurring 1 based on the analysis of ¹H NMR spectrum was described. However, 2D NMR methods and ¹³C NMR spectroscopy were not employed. We therefore confirmed the structure of the synthetic compound 1 by means of detailed analyses of the ¹H- and ¹³C NMR spectra with the aid of various 2D NMR experiments.¹⁷

All ¹H- and ¹³C NMR signal assignments, except for those of the carbons C6a and C6b, were confirmed by means of H-H COSY, C-H COSY and HMBC spectral analyses and by comparison of the spectra with those of the reference compounds 9, 10 (which were synthesized by us), and balsaminone A (2) described in a previous report ² (refer to Table 2 and Fig. 3).

The ¹H NMR spectrum of **1** showed the following signals: (i) two singlets (δ 2.52 and δ 2.47) due to the C2- and C9methyl protons, a singlet (δ 4.18) due to the C5-methoxyl protons, and a singlet (δ 7.35) assignable to the C6-proton; (ii) a singlet (δ 12.12) due to the hydrogen-bonded hydroxyl at C-11 was observed at lower field than a singlet (δ 9.41) due to the C4-hydroxyl group. The ${}^{13}C$ NMR spectrum of 1 displayed signals for all 23 carbons in the molecule: one methoxyl, two carbonyls, two aromatic methyls and 18 aromatic carbons, five of which were protonated, eight

Table 2. ¹³C and ¹H NMR spectral data (δ , ppm) for compounds 1, ^a 2, ^a 9^a and 10^b

Figure 3. Long-range correlation in the HMBC spectrum of violet-quinone (1).

quaternary, and five bearing oxygen (Table 2). Accordingly, the above data proved that violet-quinone has the structure 1.

3. Conclusion

The first and biomimetic synthesis of the natural product violet-quinone (1) using BNTQ 7b as a key intermediate was accomplished, based on pathway (II), in 11 steps from methyl 3-methyl-2-butenoate^{14a} as a starting material with an overall yield of ca. 13%. In this first synthesis, a key intermediate 7b was selectively synthesized in excellent yield by utilizing a novel oxidative dimerization of 4b with the ZrO_2/O_2 system. Furthermore, the construction of the DNFQ framework from BNPQ 12 was achieved by photolysis using a 450 W Hg lamp. The structure of violet-quinone has been established as 1 by this synthesis. Investigations of the biological activity of the synthetic compounds 1, 9 and 10 are in progress.

Carbon no.	Violet-quinone (1)		Balsaminone A $(2)^2$		9 °		10°	
	¹³ C	¹ H ^d	¹³ C	¹ H	¹³ C	${}^{1}\mathrm{H}^{\mathrm{d}}$	¹³ C	¹ H ^d
1	112.2	7.75 br s	121.2	8.48 m	121.0	8.43 d (8.2)	120.0	8.35 m
2	140.8		127.8	7.67 m	128.0	7.70 dt (8.2, 1.2)	127.9	7.79 br t (7.9)
3	115.9	6.92 d (0.9)	127.1	7.67 m	127.4	7.63 dt (8.2, 1.2)	126.8	7.71 br t (7.9)
4	155.3		123.1	8.34 m	123.7	8.38 d (8.2)	123.4	8.35 m
4a	113.1		125.6		127.1		125.7	
5	156.1		142.8		154.3		146.9	
6	95.0	7.35 s	134.7		96.5	7.46 s	98.6	7.55 s
6a	123.2 ^e		114.6		125.3		124.1	
6b	125.4 ^e		118.9		119.4		119.0	
7	181.3		174.6		174.3		173.4	
7a	133.3		133.7		133.4 ^f		132.7	
8	121.3	7.57 d (0.9)	127.4	8.30 m	126.9 ^f	8.25 m	125.9 ^f	8.18 m
9	148.3		134.2	7.80 m	133.9 ^f	7.78 m	133.78 ^f	7.91 m
10	124.7	7.09 br s	133.8	7.80 m	133.8 ^f	7.78 m	133.82 ^f	7.91 m
11	162.9		126.7	8.30 m	126.7 ^f	8.25 m	126.0 ^f	8.18 m
11a	113.2		132.3		132.9 ^f		132.3	
12	178.8		180.2		182.1		181.2	
12a	152.2		153.1		152.5		152.2	
13a	149.8		148.8		149.0		152.4	
13b	118.9		125.0		121.5		120.7	
2-Me	21.7	2.52 s						
4-OH		9.41 s						
5-OMe	55.8	4.18 s			56.2	4.12 s		
5-OH				6.33 s				10.54 s
6-OMe			63.4	4.09 s				
9-Me	22.2	2.47 s ^f						
11-OH		12.12 s						

^a Data recorded in CDCl₃ at 300 MHz (¹H NMR) and 125 MHz (¹³C NMR).

^b Data recorded in CD₃SOCD₃ at 300 MHz (¹H NMR) and 125 MHz (¹³C NMR). ^c Assignment based on ¹H⁻¹H COSY, ¹H⁻¹³C COSY and HMBC spectra.

Coupling constants (J in Hz) are in parentheses.

Only the chemical schift of a methyl proton signal (δ 2.47) at the C9 position was different from that (δ 2.74) in the previous report.¹

Interchangeable.

4. Experimental

4.1. General

All melting points are uncorrected Infrared (IR) spectra were recorded with a JASCO IR-700 spectrometer, and ¹Hand ¹³C NMR spectra with JEOL JNM-AL300 and JNM-alpha 500 spectrometers, with tetramethylsilane as an internal standard (CDCl₃, CD₃COCD₃ or CD₃SOCD₃ solution). Mass spectra were recorded on a JEOL JMS-D300 or Shimadzu OP-5000 spectrometer. Elemental analyses were done using a Yanaco CHN-MT-3 apparatus. Merck Kieselgel 60 (230-400 mesh), Wako silica gel C-200 (200 mesh) and Merck Kieselgel 60 F₂₅₄ were used for flash column chromatography, column chromatography and thin-layer chromatography (TLC), respectively. Each organic extract was dried over MgSO₄ or Na₂SO₄. Photolyses were conducted with a Eikohsha 60 W lowpressure or 450 W high-pressure mercury lamp and irradiation was performed through a Pyrex vessel. The semiconductors, such as ZrO2 and activated charcoal powders, are commercially available (Wako Pure Chemical Industries, Ltd, Japan).

4.1.1. Oxidative dimerization of 4a. Method A (with the Act-C/O₂ system). A slurry of activated charcoal powder (1 g) and 4a (100 mg, 0.58 mmol) in a dioxygen-saturated MeCN (15 ml) was vigorously stirred at 70 °C for 16 h under normal laboratory light. A similar result was obtained in the dark. The insoluble reagent was filtered off and washed with MeCN, and then the filtrate was evaporated. The residue was subjected to flash column chromatography on silica gel. The eluate with CH₂Cl₂/ hexane (1:1, v/v) gave 95 mg (95%) of 4,4'-dimethoxy-[2,2']binaphthalenylidene-1,1'-dione (**6a**), as deep blue needles, mp 257-258 °C (lit.^{13a} 256-258 °C). IR (KBr) cm⁻¹: 1606, 1584, 1561. ¹H NMR (CDCl₃) δ: 4.08 (6H, s, 4 and 4'-OMe), 7.48 (2H, broad t, J=7.7 Hz, 7 and 7'-H), 7.61 (2H, broad t, J=7.7 Hz, 6 and 6'-H), 7.79 (2H, broad d, J=7.7 Hz, 8 and 8'-H), 8.17 (2H, broad d, J=7.7 Hz, 5 and 5'-H), 8.42 (2H, s, 3 and 3'-H). LR-MS m/z: 344 (M⁺). HR-MS calcd for C₂₂H₁₆O₄: 344.1044. Found: 344.1029.

Method B (with the ZrO_2/O_2 system). A slurry of ZrO_2 powder (5 g) and 4a (100 mg, 0.58 mmol) in dioxygensaturated MeCN (15 ml) was vigorously stirred at 70 °C for 1.5 h under normal laboratory light. The insoluble reagent was filtered off and washed with MeCN, and then the filtrate was evaporated. The residue was purified by the same method described above to give 6a (75%) and 19 mg (17%) of 4-methoxy-1,2-naphthoquinone, as yellow needles (hexane-AcOEt), mp 192-193 °C (lit.^{13j} 188-189 °C). IR (KBr) cm⁻¹: 1700, 1627, 1607, 1588. ¹H NMR (CDCl₃) δ : 4.03 (3H, s, 4-OMe), 5.99 (1H, s, 3-H), 7.59 (1H, dt, J=7.9, 1.3 Hz, 6 or 7-H), 7.70 (1H, dt, J=7.9, 1.3 Hz, 6 or 7-H), 7.87 (1H, dd, J=7.9, 1.3 Hz, 5-H), 8.13 (1H, dd, J=7.7, 1.5 Hz, 8-H). ¹³C NMR (CDCl₃) δ: 56.81 (C4–OMe), 103.04 (C3), 124.73 (Ar-C), 129.05 (Ar-C), 130.33 (C4a or C8a), 131.52 (Ar-C), 131.96 (C4a or C8a), 134.96 (Ar-C), 168.68 (C4), 179.39 (C1 or C2), 179.49 (C1 or C2). LR-MS m/z: 188 (M⁺). HR-MS calcd for C₁₁H₈O₃: 188.0479. Found: 188.0475.

4.1.2. Oxidation of 6a with 69% HNO₃. A mixture of 69% HNO₃ (2 ml) and **6a** (46 mg, 0.27 mmol) was stirred at 0 °C for 15 min. The reaction mixture was poured into a large volume of ice–water. The precipitated product was recrystallized from CHCl₃ to yield 42 mg (99%) of 2,2'-

binaphthalenyl-1,4,1',4'-tetraone (**7a**), as yellow needles, mp 288 °C (decomp.) (lit.^{13b} 270–280 °C). IR (KBr) cm⁻¹: 1664, 1613, 1587. ¹H NMR (CDCl₃) δ : 7.07 (2H, s, 3 and 3'-H), 7.75–7.80 (4H, m, Ar–H), 8.12–8.16 (4H, m, Ar–H). LR-MS *m*/*z*: 314 (M⁺). HR-MS calcd for C₂₀H₁₀O₄: 314.0576. Found: 314.0561.

4.1.3. Photolysis of **6a**. *Method A* (*with a* 450 W *mercury lamp*). A solution of **6a** (25 mg, 0.15 mmol) in an argonsaturated CHCl₃ (10 ml) in a Pyrex vessel was irradiated using a 450 W high-pressure Hg lamp for 1 h, and then evaporated. The residue was subjected to flash column chromatography on silica gel. The eluate with CH₂Cl₂/ hexane (2:1, v/v) gave 6 mg (25%) of 1'-hydroxy-4'methoxy-[2,2']binaphthalenyl-1,4-dione (**8a**) and 14 mg (59%) of 5-methoxy-dinaphtho[1,2-*b*;2',3'-*d*]furan-7,12dione (**9**).

Compound **8a**. Deep violet needles (benzene), mp 189 °C (lit.^{13c} 185–186 °C). IR (KBr) cm⁻¹: 3328, 1655, 1590. ¹H NMR (CDCl₃) δ : 3.99 (3H, s, 4'-OMe), 6.56 (1H, s, 3'-H), 7.15 (1H, s, 3-H), 7.57–7.60 (2H, m, Ar–H), 7.81–7.85 (2H, m, Ar–H), 8.14–8.28 (3H, m, Ar–H), 8.39–8.42 (1H, m, Ar–H), 8.51 (1H, s, 1'-OH). ¹³C NMR (CDCl₃) δ : 55.81 (C4'-OMe), 104.65 (C3'), 114.43 (C2'), 121.73 (C8'), 127.32 (C8a'), 127.55 (C6' or C7'), 127.76 (C5 or C8), 127.99 (C4a'), 131.75 (C4a or C8a), 132.57 (C4a or C8a), 134.05 (C6 or C7), 134.82 (C6 or C7), 138.89 (C3), 145.48 (C1'), 149.71 (C4'), 150.00 (C2), 184.49 (C1 or C4), 188.49 (C1 or C4). LR-MS *m/z*: 330 (M⁺). HR-MS calcd for C₂₁H₁₄O₄: 330.0888. Found: 330.0922.

Compound **9**. Orange needles (CHCl₃-hexane), mp 291.5–292.5 °C (lit.^{13a} 293–295 °C). IR (KBr) cm⁻¹: 1665, 1590. LR-MS *m/z*: 328 (M⁺).

Method B (with a 60 W mercury lamp). Photolysis of **6a** (25 mg, 0.15 mmol) was carried out under a 60 W lowpressure Hg lamp at 23 °C for 80 h by the same procedure under the conditions described above (method A) for the photolysis of **6a**. The crude product was purified by flash column chromatography on silica gel. The eluate with CH₂Cl₂/hexane (2:1, v/v) gave 21 mg (88%) of **8a**.

4.1.4. Photolysis of **7a.** Photolysis of **7a** (20 mg, 0.06 mmol) was carried out at 23 °C for 2 h by the same procedure under the conditions described above (method A) for the photolysis of **6a**. The crude product was purified by recrystallization from CHCl₃–MeOH to yield 18 mg (90%) of 5-hydroxy-dinaphtho[1,2-*b*;2',3'-*d*]furan-7,12-dione (**10**) as red needles, mp 305–308 °C (lit.^{13e} 360 °C). IR (KBr) cm⁻¹: 3310, 1654, 1592. LR-MS *m*/*z*: 314 (M⁺). HR-MS calcd for C₂₀H₁₀O₄: 314.0576. Found: 314.0560.

4.1.5. Methylation of 10. CH_3I (24 µl, 0.4 mmol) was added to a solution of **10** (30 mg, 0.10 mmol) and anhydrous K_2CO_3 (132 mg) in dry DMF (12 ml), and the solution was

stirred vigorously at 23 °C for 4 h. The reaction mixture was poured into ice–water, neutralized with 10% HCl, and extracted with CHCl₃. The organic layer was washed with H₂O, dried and concentrated. The residue was purified by recrystallization from CHCl₃–MeOH to yield 28 mg (91%) of **9**.

4.1.6. Oxidative dimerization of 1-naphthol 4b with various reagents. Method A (entry 1) (with Ag_2O). A mixture of **4b** (50 mg, 0.23 mmol) in CHCl₃ (10 ml) containing 1.5 equiv. of Ag₂O (80 mg, 0.344 mmol) was stirred at 23 °C in an air atmosphere for 1 h. The solvent was removed and the residue was subjected to flash column chromatography on silica gel using CH₂Cl₂/hexane (1:2, v/v) as an eluent to give a mixture of 5b and 6b, and 4, 5-dimethoxy-7-methyl-1,2-naphthoquinone (11a). Benzyl iodide (268 µl, 2.26 mmol) was added to a solution of the mixture of **5b** and **6b**, and anhydrous K₂CO₃ (312 mg) in dry DMF (5 ml), and the solution was stirred vigorously at 23 °C for 40 min. The reaction mixture was poured into ice-water, neutralized with 10% HCl, and extracted with CH₂Cl₂. The organic layer was washed with H₂O, dried and concentrated. The residue was subjected to flash column chromatography on silica gel. The eluate with hexane/ AcOEt (10:1, v/v) gave 1,1'-dibenzyloxy-4,5, 4',5'-tetramethoxy-[2,2']binaphthalenyl-1,1'-diol (5d) and 4,5,4',5'tetramethoxy-7,7'-dimethyl-[2,2']binaphthalenyli-dene-1,1'-dione (**6b**). Yields are listed in Table 1.

Compound **5d**. Pale yellow powder (AcOEt), mp 203.5–204.0 °C. IR (KBr) cm⁻¹: 2922, 1604. ¹H NMR (CDCl₃) δ : 2.50 (6H, s, 7 and 7'-Me), 3.91 (6H, s, 4 and 4'-OMe), 4.02 (6H, s, 5 and 5'-OMe), 4.71 (4H, s, 2×–CH₂–Ar), 6.78 (2H, d, *J*=1.29 Hz, 6 and 6'-H), 7.17 (2H, s, 3 and 3'-H), 7.20–7.30 (10H, m, Ar–H), 7.67 (2H, d, *J*=1.29 Hz, 8 and 8'–H). ¹³C NMR (CDCl₃) δ : 22.23 (7- and 7'–Me), 56.55 (5-OMe), 56.62 (4-OMe), 75.14 (–CH₂–Ar), 108.27 (C3), 109.07 (C6), 114.49 (C8), 116.21 (C2), 127.46 (C4a), 127.87 (Ar–C), 128.10 (Ar–C), 128.35 (Ar–C), 132.104 (C8a), 136.65 (C7), 137.32 (Ar–C), 145.16 (C1), 152.82 (C4), 157.13 (C5). LR-MS *m/z*: 614 (M⁺). HR-MS: calcd for C₄₀H₃₈O₆: 614.2658. Found: 614.2642. Anal. Calcd for C₄₀H₃₈O₆: C, 78.15; H, 6.23. Found: C, 78.13; H, 6.20.

Compound **6b**. Deep violet needles, mp 236.5–237 °C (lit.^{15a} 228 °C). IR (KBr) cm⁻¹: 1589. ¹H NMR (CDCl₃) δ : 2.43 (6H, s, 7 and 7'-Me), 3.92 (6H, s, 4 and 4'-OMe), 4.05 (6H, s, 5 and 5'-OMe), 6.98 (2H, broad t, *J*=0.9 Hz, 6 and 6'-H), 7.70 (2H, broad t, *J*=0.9 Hz, 8 and 8'-H), 8.37 (2H, s, 3 and 3'-H). ¹³C NMR (CDCl₃) δ : 21.76 (7 and 7'-Me), 56.08 (Ar–OMe), 56.91 (Ar–OMe), 103.21 (C3 and C3'), 117.99, 118.18 (C6 and C6', or C8 and C8'), 121.74 (C6 and C6', or C8 and C8'), 130.32 (Ar–C), 133.60 (Ar–C), 140.27 (Ar–C), 156.14 (Ar–C), 159.46 (Ar–C), 188.93 (C1 and C1'). HR-MS calcd for C₂₆H₂₄O₆: 432.1566. Found: 432.1563. Anal. Calcd for C₂₆H₂₄O₆: C, 72.21; H, 5.59. Found: C, 72.35; H, 5.56.

Compound **11a**. Orange powder (CHCl₃-hexane), mp 175.0–175.5 °C. IR (KBr) cm⁻¹: 1642, 1603, 1580. ¹H NMR (CDCl₃) δ : 2.42 (3H, s, 7 and 7-Me), 3.92, 3.97 (6H, each s, 4 and 5-OMe), 5.89 (1H, s, 3-H), 7.07 (1H, br s, 6-H), 7.63 (1H, d, *J*=0.74 Hz, 8-H). ¹³C NMR (CDCl₃) δ :

21.6 (7-Me), 56.75, 56.81 (4 and 5-OMe), 102.1 (C3), 116.2 (C4a), 120.8, 123.8 (C6 and C8), 132.2 (C8a), 143.8 (C7), 158.2 (C5), 172.7 (C4), 179.1, 180.6 (C1 and C2). LR-MS m/z: 232 (M⁺). Anal. Calcd for C₁₃H₁₂O₄: C, 67.23; H, 5.21. Found: C, 67.20; H, 5.19.

Method B (entry 2) (with AgO/40% HNO₃). To a mixture of **4b** (50 mg, 0.229 mmol) and AgO (284 mg, 2.29 mmol) in acetone (5 ml) was added 40% HNO₃ (1.5 ml) over 5 min. The reaction mixture was stirred at room temperature for 30 min, diluted with water and extracted with CHCl₃. The extracts were washed with brine, dried over MgSO₄ and evaporated. The residue was purified by flash column chromatography on silica gel. The eluate with CHCl₃/AcOEt (20:1, v/v) gave 23 mg (50%) of 5,5'-dimethoxy-7,7'-dimethyl-[2,2']binaphthalenyl-1,4,1',4'-tetraone (**7b**) and 8 mg (17%) of 5-methoxy-8-methyl-1,4-naphthoquinone (**11b**).

Compound **7b.** Yellow amorphous powder (CHCl₃–MeOH), mp 279–281 °C (lit.^{15a} 310 °C). IR (KBr) cm⁻¹: 1649, 1601, 1587. ¹H NMR (CDCl₃) δ : 2.50 (6H, s, 7 and 7'-Me), 4.02 (6H, s, 5 and 5'-OMe), 6.94 (2H, s, 3 and 3'-H), 7.13 (2H, broad s, 6 and 6'-H), 7.59 (2H, broad s, 8 and 8'-H). HR-MS calcd for C₂₄H₁₈O₆: 402.1098. Found: 402.1133. Anal. Calcd for C₂₄H₁₈O₆: C, 72.64; H, 4.51. Found: C, 72.60; H, 4.50.

Compound **11b.** Yellow needles (benzene), mp 169.5–170 °C (lit.^{14b} 164–166 °C). IR (KBr) cm⁻¹: 1651, 1559. ¹H NMR (CDCl₃) δ : 2.48 (3H, s, 7-Me), 4.00 (3H, s, 5-OMe), 6.84 (2H, s, 2 and 3-H), 7.11 (1H, s, 6-H), 7.55 (1H, s, 8-H). HR-MS calcd for C₁₂H₁₀O₃: 202.0627. Found: 202.0614.

Method C (entry 3) (*with* Ag_2O/NEt_3). A mixture of **4b** (100 mg, 0.58 mmol) in CHCl₃ (20 ml) containing 0.2% NEt₃ and 20 equiv. of Ag_2O (2.66 g) was stirred at 23 °C in an air atmosphere for 1 h. The solvent was removed and the residue was subjected to flash column chromatography on silica gel. The eluate with CH₂Cl₂/hexane (1:2, v/v) gave **7b** and **11b**. Yields are listed in Table 1.

Method D (entry 4) (with the Act-C/O₂ system). Oxidation of **4b** (100 mg, 0.58 mmol) was carried out at 70 °C for 24 h by the same procedure under the conditions described above (method A) for the oxidative dimerization of **4a**. The crude product was purified by flash column chromatography on silica gel. The eluate with CH₂Cl₂/hexane (1:2, v/v) gave **5d**, **6b**, **11a** and **11b**. Yields are listed in Table 1.

Method E (entry 5) (with the ZrO_2/O_2 system). Oxidation of **4b** (100 mg, 0.58 mmol) was carried out at 70 °C for 19 h by the same procedure under the conditions described above (method B) for the oxidative dimerization of **4a**. The crude product was purified by recrystallization from benzene to yield **6b** (96%).

4.1.7. Oxidation of 6b with 69% HNO₃. A mixture of 69% HNO₃ (3 ml) and **6b** (80 mg, 0.17 mmol) was stirred at 0 $^{\circ}$ C for 15 min. The reaction mixture was poured into a large volume of ice–water. The precipitated product was

recrystallized from CHCl₃/MeOH to yield 73 mg (99%) of **7b**.

4.1.8. 5,5'-Dihydroxy-7,7'-dimethyl-[2,2']binaphthale**nyl-1,4,1',4'-tetraone (biramentaceone) (7c).** Magnesium bromide (2.2 g, 12 mmol) was added to a solution of 7b (200 mg, 0.5 mmol) dissolved in anhydrous toluene (30 ml) and the whole was refluxed for 12 h. The reaction was quenched with cooled water and saturated NH₄Cl solution, and the whole stirred for 30 min. The mixture was extracted with CHCl₃, and the CHCl₃ layer was washed with H₂O, dried, concentrated, and then the residue was subjected to flash column chromatography on silica gel. The eluate with hexane/AcOEt (5:1, v/v) gave 150 mg (80%) of 7c as an (CHCl₃-MeOH), orange amorphous powder mp 264–265 °C (decomp.) (lit.^{15a} 260 °C). IR (KBr) cm⁻¹: 3426, 1665, 1641, 1574. ¹H NMR (CDCl₃) δ: 2.45 (6H, s, 7 and 7'-Me), 7.01 (2H, s, 3 and 3'-H), 7.12 (2H, dd, J=0.9, 1.7 Hz, 6 and 6'-H), 7.49 (2H, dd, J=0.9, 1.7 Hz, 8 and 8'-H), 11.79 (2H, s, 5 and 5'-OH). HR-MS calcd for C₂₂H₁₄O₆: 374.0786. Found: 374.0787. Anal. Calcd for C₂₂H₁₄O₆: C, 70.58; H, 3.77. Found: C, 70.47; H, 3.75.

4.1.9. 5,5'-Bis-benzyloxy-7,7'-dimethyl-[2,2']binaphthalenyl-1,4,1',4'-tetraone (12). Benzyl iodide (72 μ l, 0.54 mmol) was added to a solution of 7c (20 mg, 0.054 mmol) and anhydrous K2CO3 (76 mg) in dry DMF (10 ml), and the solution was stirred vigorously at 23 °C for 1 h. The reaction mixture was poured into ice-water, neutralized with 10% HCl, and extracted with CHCl₃. The organic layer was washed with H₂O, dried and concentrated. The residue was subjected to flash column chromatography on silica gel. The eluate with benzene/acetone (40:1, v/v) gave 24 mg (78%) of 12 as yellow amorphous powder (CHCl₃-MeOH), mp 192-193 °C. IR (KBr) cm⁻¹: 1654, 1598. ¹H NMR (CDCl₃) δ: 2.46 (6H, s, 7 and 7'-Me), 5.31 (4H, s, -OCH₂), 6.95 (2H, s, 3 and 3'-H), 7.17 (2H, broad d, J=0.7 Hz, 6 and 6'-H), 7.33-7.60 (10H, m, Ar-H), 7.58 (2H, broad d, J=0.7 Hz, 8 and 8'-H). HR-MS calcd for C36H26O6: 554.1722. Found: 554.1740. Anal. Calcd for C₃₆H₂₆O₆: C, 77.96; H, 4.73. Found: C, 77.92; H, 4.70.

4.1.10. 4,11-Bis-benzyloxy-5-hydroxy-2,9-dimethyl-dinaphtho[1,2-b;2',3'-d]furan-7,12-dione (13). A solution of 17 (20 mg, 0.036 mmol) in argon-saturated CHCl₃ (10 ml) in a Pyrex vessel was irradiated using a 450 W high-pressure Hg lamp for 1 h, and then evaporated. The residue was subjected to flash column chromatography on silica gel. The eluate with CH₂Cl₂/hexane (2:1, v/v) gave 18 mg (87%) of 13 as red needles (CHCl₃-MeOH), mp 258-258.5 °C. IR (KBr) cm⁻¹: 3406, 1662, 1598, 1505. ¹H NMR (CDCl₃) δ: 2.49 (3H, s, 9-Me), 2.54 (3H, s, 2-Me), 5.29 (2H, s, C4-OCH₂), 5.30 (2H, s, C11-OCH₂), 6.90 (1H, broad s, 3-H), 7.18 (1H, broad s, 10-H), 7.43 (1H, s, 6-H), 7.31-7.73 (10H, m, Ar-H), 7.73 (1H, broad d, J=0.9 Hz, 8-H), 7.93 (1H, broad d, J=0.9 Hz, 1-H), 9.39 (1H, s, 5-OH). ¹³C NMR (CDCl₃) δ: 22.01 (C2-Me), 22.31 (C9-Me), 70.98 (C11-OCH₂), 72.09 (C4-OCH₂), 101.10 (C6), 110.08 (C3), 113.58 (C4a), 114.65 (C1), 118.37 (C11a), 120.21 (C10), 120.55 (C13b), 121.17 (C8), 122.70 (C6a or C6b), 123.27 (C6a or C6b), 126.67 (Ar-C), 127.83 (Ar-C), 128.14 (Ar-C), 128.66 (Ar-C), 129.10 (Ar-C), 129.17 (Ar-C), 134.80 (Ar-C), 135.86 (C7a), 136.25

(Ar–C), 138.40 (C2), 146.60 (C9), 147.08 (C13a), 153.56 (C5), 154.12 (C12a), 155.67 (C4), 159.89 (C11), 174.12 (C12), 181.49 (C7). HR-MS calcd for $C_{36}H_{26}O_6$: 554.1722. Found: 554.1867. Anal. Calcd for $C_{36}H_{26}O_6$: C, 77.96; H, 4.73. Found: C, 77.99; H, 4.75.

4.1.11. 4,11-Bis-benzyloxy-5-methoxy-2,9-dimethyl-dinaphtho[1,2-b;2'3'-d]furan-7,12-dione (14). Methyl iodide $(0.14 \mu l, 2.29 \text{ mmol})$ was added to a solution of 13 (100 mg, 0.19 mmol) and anhydrous K₂CO₃ (260 mg) in dry DMF (10 ml), and the solution was stirred at 23 °C for 2 h with vigorous stirring. The reaction mixture was poured into icewater, and extracted with CHCl₃. The organic layer was washed with H₂O, dried and concentrated. The residue was subjected to flash column chromatography on silica gel. The eluate with AcOEt/hexane (1:1, v/v) gave 85 mg (79%) of 14 as red needles (CHCl3-MeOH), mp 322-324 °C. IR (KBr) cm⁻¹: 1662, 1598, 1567. ¹H NMR (CDCl₃) δ: 2.50 (3H, s, 2-Me), 2.55 (3H, s, 9-Me), 4.05 (3H, s, 5-OMe), 5.21 (2H, s, 4-OCH₂), 5.31 (2H, s, 11-OCH₂), 6.95 (1H, broad s, 3-H), 7.18 (1H, broad s, 10-H), 7.43 (1H, s, 6-H), 7.33-7.73 (10H, m, Ar-H), 7.73 (1H, s, 8-H), 7.93 (1H, s, 1-H). HR-MS calcd for C₃₇H₂₈O₆: 568.1878. Found: 568.1926. Anal. Calcd for C37H28O6: C, 78.15; H, 4.96. Found: C, 78.13; H, 4.99.

4.1.12. 4,11-Dihydroxy-5-methoxy-2,9-dimethyl-dinaph-tho[**1,2-***b***;2**',**3**'-*d*]**furan-7,12-dione** (violet-quinone) (1). Compound **14** (46 mg, 0.08 mmol) was hydrogenated in the presence of 10% Pd/C (20 mg) in ethyl acetate (8 ml). The catalyst was removed, and the filtrate was concentrated. The residue was subjected to flash column chromatography on silica gel. The eluate with CH_2Cl_2 gave 30 mg (96%) of **1** as violet solid (CHCl₃-MeOH), mp 332-335 °C (lit.¹ 335-338 °C). IR (KBr) cm⁻¹: 3370, 1664, 1640, 1607. HR-MS calcd for $C_{23}H_{16}O_6$: 388.0942. Found: 388.0957. Anal. Calcd for $C_{23}H_{16}O_6$: C, 71.13; H, 4.15. Found: C, 71.23; H, 4.18.

References and notes

- Sankaram, A. V. B.; Reddy, V. V. N.; Sidhu, G. S. Phytochemistry 1981, 20, 1093–1096.
- 2. Ishiguro, K.; Ohira, Y.; Oku, H. J. Nat. Prod. 1998, 61, 1126-1129.
- (a) Carney, J. R.; Scheuer, P. J. *Tetrahedron Lett.* **1993**, *34*, 3727–3730.
 (b) Kayser, O.; Eiderrlen, A. F.; Laatsch, H.; Croft, S. L. *Acta Trop.* **2000**, *77*, 307–314.
- Maiti, B. C.; Musgrave, O. C. J. Chem. Soc., Perkin Trans. 1 1986, 675–681.
- (a) Benbow, J. W.; Martinez, B. L.; Anderson, W. R. J. Org. Chem. 1997, 62, 9345–9347. (b) Katoh, T.; Nakatani, M.; Shikita, S.; Sampe, R.; Ishiwata, A.; Ohmori, O.; Nakamura, M.; Terashima, S. Org. Lett. 2001, 3, 2701–2704.
- 6. (a) Bringmann, G.; Walter, R.; Weirich, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 977–991. (b) Doussot, J.; Guy, A.; Ferroud, C. Tetrahedron Lett. 2000, 41, 2545–2547.
 (c) Matumoto, T.; Imai, S.; Yamamoto, N. Bull. Chem. Soc. Jpn 1988, 61, 911–919. (d) Jempty, T. C.; Gogins, K. A. Z.; Miller, L. L. J. Org. Chem. 1981, 46, 4545–4551. (e) Poutsma, M. L.; Dyer, C. W. J. Org. Chem. 1982, 47, 3367–3377.

(f) Hassan, J.; Sévignon, M.; Gozzi, C.; Schlz, E.; Lemarie, M. Chem. Rev. 2002, 102, 1359-1469. (g) Maiti, B. C.; Musgrave, O. C.; Skoyles, D. J. Chem. Soc., Chem. Commun. 1976, 244-245. (h) Hwang, D.-R.; Chen, C.-P.; Uang, B.-J. J. Chem. Soc., Chem. Commun. 1999, 1207-1208. (i) Corma, A.; García, H. Chem. Rev. 2002, 102, 3837-3892. (j) Li, T.-S.; Duan, H.-Y.; Li, B.-Z.; Tewari, B.-B.; Li, S.-H. J. Chem. Soc., Perkin Trans. 1 1999, 291-293. (k) Sakamoto, T.; Yonehara, H.; Pac, C. J. Org. Chem. 1997, 62, 3194-3199. (1) Toda, F.; Tanaka, K.; Iwata, S. J. Org. Chem. 1989, 54, 3007-3009. (m) Tanoue, Y.; Sakata, K.; Hashimoto, M.; Morishita, S.; Hamada, M.; Kai, N.; Nagai, T. Tetrahedron 2002, 58, 99-104. (n) Bringmann, G.; Tasler, S. Tetrahedron 2001, 57, 331-343. (o) Calderon, J. S.; Thomson, R. H. J. Chem. Soc., Perkin Trans. 1 1988, 583-586. (p) Maiti, B. C.; Musgrave, O. C.; Skoyles, D. J. Chem. Soc., Chem. Commun. 1976, 244 - 245.

- 7. (a) Kashiwagi, Y.; Ono, H.; Osa, T. *Chem. Lett.* **1993**, 81–84.
 (b) El-Seedi, H. R.; Yamamura, S.; Nishiyama, S. *Tetrahedron Lett.* **2002**, *43*, 3301–3304.
- Poutsma, M. L.; Dyer, C. W. J. Org. Chem. 1982, 47, 3367–3377.
- Bao, J.; Wulff, W. D.; Dominy, J. B.; Fumo, M.; Grant, E. B.; Rob, A. C.; Whicomb, M. C.; Yeung, S.-M.; Ostrander, R. L.; Rheingold, A. L. J. Am. Chem. Soc. 1996, 118, 3392–3405.
- (a) Maldotti, A.; Molinari, A.; Amadelli, R. *Chem. Rev.* 2002, *102*, 3811–3836. (b) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. *Chem. Rev.* 1995, *95*, 69–96.
 (c) Fujishima, A.; Honda, K. *Nature* 1972, *238*, 37–38.
 (d) Fox, M. A. *Top. Curr. Chem.* 1987, *142*, 71–99.
- 11. Bergbreiter, D. E. Chem. Rev. 2002, 102, 3345-3384.

- 12. Otsuka, T.; Okamoto, I.; Kotani, E.; Takeya, T. *Tetrahedron Lett.* **2004**, *45*, 2643–2647.
- (a) Musgrave, O. C.; Skoyles, D. J. Chem. Soc., Perkin Trans. 1 1979, 2679–2681. (b) Pummerer, R.; Pfaff, A.; Riedlbauer, G.; Rosenhauer, E. Chem. Ber. 1939, 72, 1623–1634.
 (c) Hewgil, F. R.; Mullings, L. R. Aust. J. Chem. 1975, 28, 355–367. (d) Shand, A. J.; Thomson, R. H. Tetrahedron 1963, 19, 1919–1937. (e) Buchan, R.; Musgrave, O. C. J. Chem. Soc., Perkin Trans. 1 1980, 90–92. (f) Hewgill, F. R.; Mullings, L. R. Aust. J. Chem. 1975, 28, 355–367. (g) Laatsch, H. Z. Naturforsch. 1989, 44b, 1271–1278. (h) S-Frohlinde, D.; Werner, V. Chem. Ber. 1961, 94, 2726–2731. (i) B-Barbry, L.; Bonneau, R.; Castellan, A. J. Phys. Chem. A 1999, 103, 11136–11144. (j) Aratani, T.; Dewar, M. J. S. J. Am. Chem. Soc. 1966, 88, 5479–5482.
- (a) Casey, C. P.; Jones, C. R.; Tukada, H. J. Org. Chem. 1981, 46, 2089–2092. (b) Casey, C. P.; Jones, C. R.; Tukada, H. J. Org. Chem. 1998, 63, 1090–1097.
- (a) Laatsch, H. Liebigs Ann. Chem. 1980, 4, 1321–1347.
 (b) Laatsch, H. ibid. 1980, 4, 140–157. (c) Laatsch, H. ibid. 1983, 7, 1020–1030. (d) Laatsch, H. ibid. 1983, 7, 1886–1900. (e) Laatsch, H. ibid. 1984, 8, 1367–1381.
 (f) Laatsch, H. ibid. 1985, 9, 1847–1865. (g) Laatsch, H. ibid. 1986, 10, 1655–1668. (h) Laatsch, H. ibid. 1986, 10, 1669–1686.
- Iranpoor, N.; Firouzabadi, H.; Aghapour, Gh.; Vaez zadeh, A. R. *Tetrahedron* 2002, 58, 3689–3693.
- 2D NMR experiments: ¹H-¹H shift correlation spectroscopy (H-H COSY); ¹³C-¹H shift correlation spectroscopy (C-H COSY), ¹H-detected heteronuclear multiple bond connectivity (HMBC); and nuclear Overhauser enhancement and exchange spectroscopy (NOESY) experiments.

3948